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Abstract-Some years ago beautifully conducted experiments on the growth of small cavitation bubbles 
were reported by Kermeen et al. An approximative calculation for the time in which bubbles grow 
to a certain size by convective diffusion was given by two of these authors as well. However, in this 
work vapor content of the bubbles and surface tension at the interface with the fluid were left out of 
account. In the present paper the theory is reexamined. Allowance is made for the above-mentioned effects. 
A model due to Levich is proposed for the calculation of the mass flux by diffusion in the bubbles. Results 
are obtained for the data occurring in the experiments of Parkin and Kermeen, and discussed in connection 
with these experiments. An explanation for the difference between theoretical and experimental values is 

suggested. 

NOMENCLATURE 

concentration [kmoles/m3] ; 
diffusion coefficient of air in water (2 x 
low9 m2/s); 
gas constant (8.3 x lo3 J/kmole deg); 
length of strip in Fig. 2 ; 
molecular weight; 
number of kilomoles air in a bubble; 
static pressure; 
P&let number ; 
bubble radius ; 
bubble surface ; 
time [s] ; 
temperature [“K] ; 
fluid velocity far from bubble ; 
local fluid velocity ; 
volume of bubble; 
coordinate along strip in equation (I 1); 
coordinate normal to strip in equation 
(II); 
density ; 
coefficient of surface tension. 

Subscripts 

;: 
gas ; 
fluid ; 

* At present : Professor of Fluid Mechanics. Technische 
Hogeschool Twente, The Netherlands. 

0, vapor ; 

Fy’ 
at infinity ; 
initial value in R,, equilibrium value in 

co. 

1. INTRODUCTION 

SOME years ago Kermeen er al. [IJ and Parkin 
and Kermeen [2] published beautiful experi- 
ments on the growth of small cavitation bubbles 
in the boundary layer on a body immersed in a 
water stream of high velocity. The body consisted 
of a hemispherical head, smoothly connected 
with a circular cylinder. In the boundary-layer 
region downstream from the pressure minimum 
small bubbles (radius of order 10m5 m) were 
observed and photographed, while growing in a 
position of relative rest with respect to the body. 
The growth of such bubbles is either determined 
by diffusion of dissolved gas from the fluid into 
the bubble (gaseous ~vitation) or of a vaporous 
character {vaporous cavitation). The latter type 
of growth bears an explosive character (see 
Section 2 below) and because in the experiments 
mentioned above such an explosive growth did 
not occur, it was concluded in reference [2] 
(henceforth denoted with PK.) that in this case 
the bubbles were growing by diffusion of gas 
(mainly air) from the ambient water into the 
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bubble. For bubblesat rest with respect to the fluid 
growth times by diffusion have been calculated 
by Epstein and Plesset [3]. In P.K. the growth 
times measured were found to be orders ofmagni- 
tude smaller than those predicted by the theory of 
reference [3]. This discrepancy was in P.K. 
attributed to convective diffusion, which process 
doesnot occurin thesituationdealt within[3].In 
[2] the authors developed an approximate theory 
for the growth by convective diffusion. 

The growth times calculated with this theory 
were found to agree reasonably well with the 
times actually measured. The experimental data 
reproduced from the work of P.K. (reference 
[2]) and the graphs following from the theory 
in reference [2] (formula 13 of reference [2]) are 
shown in Fig. l.* 

In P.K. the effects of surface tension and vapor 
content on the bubble growth were not con- 
sidered. It is shown in Section 2 below that in 
the relevant circumstances these pressures are 
of the same order of magnitude as the static 
pressure in the fluid. In the present paper an 
attempt is made to improve the theory in P.K. 
by taking the effects of vapor pressure and 
surface tension into account. 

Also a model for the calculation of the mass 
flux in the bubble is used, which is thought to be 
an improvement with respect to the model used 
in P.K. 

The object of the present paper is to investi- 
gate whether by these amendments the agree- 
ment with the measured growth times, reported 
in P.K., can be improved. 

2. THE GROWTH OF SMALL BUBBLES 

BY AIR DIFFUSION 

We consider small bubbles, tilled with vapor 
and air, with radius R in a fluid with pressure pf 
and velocity U relative to the bubble.? We 

* We have found some difference between the formula (13) 
in [Z] and the curves, derived from (13), of Fig. 3 in [2]. 

t The bubbles can be stationary with respect to the 
hemispherical head body because downstream from the 
pressure minimum the fluid friction is opposed by the 
adverse pressure gradient. 

denote the temperature of the fluid with T, the 
vapor pressure with pV and the coefficient of 
surface tension at the fluid-gas interface with (T. 
In the experiments reported in P.K. T = 294°K. 
pV = 2.28 cmHg = 3100 N/m’, CT = 7 x lo-’ 
N/m. The size of the bubbles in P.K. is about 
low5 m, while U z 8 m/s, the values assumed 
by pJ are of the order of magnitude of pl.. 

An important question is whether the bubbles 
assume a spherical shape under circumstances 
determined by the above mentioned values. 
Therefore we calculate the ratio between surface 
tension and pressure differences caused by inertia 
of the fluid 

20 
#p U2. 

This ratio, the Weber number, has a value of 
about 05 This means that the bubbles will not 
be exactly spherical but somewhat ablate. 
Because the Weber number is not very small we 
shall, however, deal with the bubbles as if 
spherical. 

For a spherical bubble the growth is deter- 
mined by the equation (see e.g. Plesset [4]) 

2a 
Ps + P, - Pf - jy 

In (1) viscous forces are neglected ; in addition 
to quantities already introduced 

ps = pressure of air in the bubble 
p = density of water, equal to lo3 kg/m3 
t = time. 

The growth times reported in P.K. are of order 
10e3 s. Then it follows that whereas the terms 
on the left-hand side of (1) are of order lo3 N/m’, 
those on the right-hand side are of order 10-l 
N/m2. Consequently we may omit the latter 
ones and consider the bubbles to be in equi- 
librium 

Pf + g = Pg + p,:. 



ON THE GROWTH OF SMALL CAVITATION BUBBLES 129 

I 
8 9 10 

P, in cm Hg 

FIG. 1. Times for bubbles to grow from R = R, to R = R, = 5 x 10-s m at various values of p,. 

The relationships (1) and (2) hold for a bubble 
at rest with respect to the fluid and pr is the 
static pressure in the fluid. In our case, where 
there is relative motion, equation (2) indicates, 
if applied locally, that in regions of high p, the 
curvature will decrease and in regions of low pf 
increase, which results in an oblate shape. 
Averaged values over the bubble surface could 
then be used in (2) if the exact shape were known. 
Since this is not so we shall insert for pr in (2) 
the static pressure in the absence of the bubble. 
To fix ideas we note that for a sphere the average 
static pressure is equal to the pressure far away 
minus dpU*. For an ellipse the average static 
pressure equals the pressure far away at an axes 
ratio between 2 and 3. 

Denoting the number of air kmoles in the 
bubble with N, the volume of the bubble with V 
and the universal gas constant with k, we write 
for the pressure pe of air in the bubble 

NkT 
Pg = - v . 

(3) 

Assuming that the growth is so slow that the 
process is isothermal, we obtain from (2) and (3) 

dV kT dN 

dt= P/ - PO + (%I (o/R) dt ’ 
(4) 

If the denominator in the right-hand side of (4) 
vanishes, any nonzero dN/dt causes an explosive 
growth. The value 

Pf =P”-+; (9 

marks the threshold for vaporous cavitation. 
For the description of vaporous cavitation the 

terms in the right-hand side of (1) should be 
taken into account. Then a large, but finite rate 
of growth is obtained. The quantity dN/dt is the 
kilomolar flux of air into the bubble. The driving 
agent for diffusion is the difference in air con- 
centration far from the bubble, c,, and the 
equilibrium concentration cO at the bubble 
surface. The latter follows from the requirement 
that in equilibrium the thermodynamic potential 

I 
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must be minimum. For dilute solutions this 
leads to Henry’s law (see e.g. Guggenheim [5]) 
stating that c,, is proportional to ps, the factor of 
proportionality being a function of temperature 
alone. 

Because in P.K. c, is in this sense associated 
with nearly atmospheric pressure and ps is of 
order of lo3 N/m’, c0 is negligibly small with 
respect to c,. Due to the difference between c, 
and cO, there is a concentration gradient in 
fluid. The mass flux is connected with 
component aclan of this gradient normal to 
bubble surface by 

dN 

s 
DedS 

dt= an 

the 
the 
the 

(6) 

where D is the diffusion coefficient for air in 
water with the value D = 2 x lo-” m2/s and 
dS is a surface element. In the following Section 
we occupy ourselves with the calculation of 
dNldt. 

3. CALCULATION OF THE RATE 

OF CONVECTIVE DIFFUSION 

The equation governing the concentration 
distribution in the fluid is, v being the velocity 
vector in the fluid, 

ac 
- + v.Vc = DV’c at 

with the boundary conditions 

c = c, at infinity (8) 

c = c0 at the bubble surface. (9) 

Following P.K. we note that a representative 
velocity of the fluid is the velocity, U say, at 
displacement thickness of the boundary layer 
in which the bubble is located. The observed 
growth times being between 10e3 and 10e2 s, it 
follows that for U x 10 m/s and R x 10e5 m, 
the ratio between the second and the first 
terms in the left-hand side of (7) is at least 10. 
so that we can regard the diffusion process 

as steady: 

v.Vc = DV2c. (10) 

For solution of (8-10) the velocity distribution 
around the bubble in the boundary layer on the 
hemispherical head body must be known. The 
whole problem presents tremendous difficulties 
and in order to make progress, some approxi- 
mations have to be made. We discuss first 
briefly the approximate calculation in P.K. 
reference [2]. There the bubble is represented 
by a two-dimensional strip of the rather arbitrary 
width (n)*R. This strip is part of an otherwise 
impermeable wall (see Fig. 2) along which water 
flows with a homogeneous velocity U. If the x 

-u 

C=C, 1 

x=L 

FIG. 2. Representation of approximated diffusion problem 
in P.K. 

coordinate is in the direction of the strip and 
and the y coordinate normal to it, (10) reduces to 

+i!k+““. 
a9 

(11) 

If the strip extends from x = 0 to x = L, the 
boundary conditions are 

c = cg at y=o; O<x<L (12) 

ac 0 
ay= 

at y=O; x<O, x>L (13) 

c = cm at (x2+y) +co. 2) (14) 

Also this problem cannot be solved exactly 
and further approximations have to be made. 
The method used in P.K. for the approximate 
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solution of (11-14) is together with other 
approximative solutions of these equations 
discussed elsewhere by the present author [6]. 

Meanwhile one might look for a more 
realistic model to represent the mass transfer 
to the bubble. Here we suggest a model, which 
we think to offer some improvement and which 
is due to Levich [7]*. Levich argues that there 
is on the bubble no velocity boundary layer in 
the usual sense, because there is no condition 
for the tangential velocity except for the con- 
dition that at the gas-water interface the 
stresses are continuous. Evaluation of this idea 
leads to the conclusion that for sufficiently 
high Reynolds number (for the experiments in 
P.K. this is about lo’, which is according to 
Levich sufficiently high) there is no region in the 
fluid where viscous forces dominate or equal 
inertia forces. To a high degree of accuracy 
therefore the velocity distribution around the 
bubble is given by the inviscid flow around the 
bubble.? Another important observation is that 
for this type of mass transfer the P&let number, 
Pe = UR/D is high. For the experiments in 
P.K. a representative value is Pe = 105. This 
means that diffusion takes place in a narrow 
region around the bubble, the diffusion bound- 
ary layer. The thickness ‘of this boundary layer 
is (see for example reference [7], p. 407) of order 
(RD/U)*, so that the ratio between boundary- 
layer thickness and bubble radius is given by 
Pe-*. Under these circumstances the derivatives 
of c normal to the bubble are large with respect 
to those along the bubble. Omitting the latter 
in the right-hand side of (10) and inserting for 
v the velocity distribution at the bubble wall 
obtained from the inviscid flow round the 
bubble at oncoming velocity U, Levich obtains 
an equation for the concentration which is 
solvable in terms of error functions, yielding for 

* The author is indebted to Dr. Marshall P. Tulin for 
bringing this book to his attention. 

t We note that the effect of surface active contaminants 
may alter this, particularly (see, for example, reference [7], 
Chapter 8) for bubbles at small Reynolds number. 

the integral in (6) 

dN 
dt = 4(c, - cO) (271 R3 UD)*. (15) 

We note that for the present case the velocity 
distribution round the bubble, not based on a 
homogeneous primary flow, but on the velocity 
profile in the boundary layer on the hemi- 
spherical head body, should be used. We have 
not attempted to determine this velocity distri- 
bution on the bubble. Work in that direction 
has been done by Lighthill [8, 91, for weak 
velocity gradients. 

Here we have restricted ourselves to a 
homogeneous primary flow, with a representa- 
tive velocity U. 

The relation corresponding to (15) in the 
approximate theory in P.K., with the width and 
breadth of the strip taken as L = R JTC, is 

dN 
dt = 4(c, - co) d (R3 UD)*. (16) 

The value given by (15) is about twice higher. 

4. CALCULATION OF GROWTH TIMES 

The growth by diffusion of a bubble follows 
from substitution of (15) in the right-hand side of 
the relation (4). We obtain that for growth from 
radius R, to radius R, the necessary time is 
given by 

r1 - lo = (2UD)+ kTc, 

RI 

X R*dR. (17) 

RO 

Growth times according to (17) were calculated 
pertaining to the values of the various para- 
meters reported in P.K. These values are listed 
below. 

R. is the initial radius of a bubble, R, the 
final radius. Following P.K. we calculated the 
growth time t, - to as a function of pressure 
for two values of Ro. Because the effect of 
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photographic resolution on the smallest obser- 
vable size was not exactly known, these two 
values were chosen in P.K. 

In P.K. the calculations were carried out for 
two velocities, the velocity at the edge of the 
velocity boundary layer at the hemispherical 
head body (50 ft/s) and the velocity at the 
displacement thickness (28 ftjs). We carried out 
the calculations for a velocity of 8.4 m/s which 
is about equal to the latter velocity. 

The data used (taken from PK., reference [2]) 
are 

R 
0 

= 1.7 x lo-‘rn 

1 x 10m5m 
R, = 5 x iOp5m 

U = 8.4 m/s; pv = 2.28 cm Hg = 3100 N/m2 

rs = 7 x 10-2 N/m 

D = 2 x 10V9m2/s 

c nj = 5 x low4 kmoles/m3 

k = 8.3 x lo3 J/kmole deg 

7’ = 70°F = 294°K. 

The results are: 

for R, = 1.7 x 10m5m 

t, - t, = 4.5 x 1o-3 f 291 x 10-3 

x (Ps - PA W) 

for R, = 10e5 m 

t, - t, = 5.9 x 1O-3 + 2.4 x 1O-3 

x tps - P”). (19) 

In the above equations pf and p,, are in cm Hg 
and t, - to in seconds. The lines representing 
the relationships (18) and (19) are drawn in 
Fig. I. 

In the theory in P.K. the effects of surface 
tension and vapor content are left out of account 
and the mass transfer is calculated according 
to (16). In that case the relation (17) is 

Rl 

s R+ dR. (20) 

Since the equilibria relation (2) simply is 

Pf = Ps 

the ratio pr/kT is apart from a numerical 
constant equal to the density pe of the air in the 
bubble. whence it follows that 

This relation is identical with the relation (13) 
in reference [2]. Calculating the growth times 
according to (20) we obtain 

t, - t, = 4 x lo-3ps; R, = 1.7 x lo-’ m 

(21) 

ti - to = 4.55 x lo-3ps; R, = IOp5m (22) 

As already mentioned in the introduction, we 
have found some difference between (21) and 
(22) on one hand and the curves shown in 
Fig. 3 of reference [2] on the other hand. 

5. DISCUSSION 

Although in the order of magnitude analysis 
in PK. surface tension and vapor content are 
not taken into account it follows from comparison 
of the lines in Fig. 1 that for not too large values 
of pf - p0 the differences with the results of the 
present theory are rather small numerically. 
The reason for this is that with the data used for 
the calculation the vapor pressure is of the 
same magnitude as surface tension, so that the 
term between brackets in (17) does not differ 
much from ps. The main numerical difference 
is caused by the factor (2nf)f by which the mass 
flux is larger in the present theory. 

The dashed line through the experimental 
points is represented by 

t, - t, = - 2.6 x lo- 3 + 2.3 x 1O-3 (pz - p,). 
(23) 

The slope of this line is between those obtained 
with the present theory for different values of Ro. 

From consideration of Fig. I and from com- 
parison of (23) with (18) and (19) it follows that 
agreement between the present theory and the 
experiments in P.K. could be obtained by a 
shift of the dashed line to the left over a distance 
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corresponding with 3.40 cmHg. For such a shift indeed to obtain an accurate enough description 
the following explanation is suggested here. of the bubble shape under the conditions of the 
Extrapolating the experimental data, we find experiments in P.K. 
that the dashed line in Fig. 1 intersects the 
pf-axis at a value larger than p”. This would 
suggest that vaporous cavitation (t - t, = 0 
for growth to any size) starts at a pressure in the 
fluid larger than p”, which is impossible. 
However, for p, the local pressure in the absence 
of bubbles is inserted. In Section 2 we discussed 
the effect of the bubble shape on the average 
static pressure. For a sphere the average pressure 
is pr - 0*25pU2. For the oblate shape which 
the bubble assumes under the influence of 
surface tension and pressure gradient the differ- 
ence between pr and the average pressure will be 
smaller. With a velocity of 8.4 m/s, pU2 = 7 x 
lo4 N’m’. A shift of the dashed line in Fig. 1 
by an amount of 0.065 of this value to the left 
would result in coincidence of the dashed line 
obtained from the experiments with a line in 
between those following from the present 
theory (equations 18 and 19). We have not 
attempted to calculate the average pressure on 
the bubble, since it would be very difficult 

1. 

2. 

3. 

4. 

5. 

6. 

8. 

9. 
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RCsum~ll y a quelques an&es de belles expkriences sur la croissance de petites bulles de cavitation ont 
&tir d&rites dans un article de Kermeen et al. Deux des auteurs de cet article ont donnt kgalement un calcul 
approcht du temps ntcessaire pour que les bulles atteignent une certaine taille par diffusion convective, 
mais en laissant de c&B la teneur en vapeur des bulles et la tension superticielle il l’interface fluide. La 
theorie est rebamin&e ici, en tenant compte des effets mention&s ci-dessus. Un modele dti B Levich est 
propost pour le calcul du flux massique pour diffusion dans les bulles. Des rksultats sont obtenus pour les 
don&es des expbriences de Parkin et Kermeen, et discutb en les comparant avec ces expkriences. On 

sugg&e une explication pour la diffkrence entre les valeurs thCoriques et exptrimentales. 

Zusammenfassung-Vor einigen Jahren wurde iiber gut durchgefiihrte Versuche fiber das Wachstum von 
Blasen an kleinen Hohlriiumen von Kermeen und anderen berichtet. Dabei wurde eine Niherungsrechnung 
fiir die Zeit in der die Blasen infolge konvektiver Diffusion zu einer bestimmten G&se anwachsen von 
zwei der Autoren angegeben. Jedoch wurde in dieser Arbeit der Dampfgehalt der Blasen und die Ober- 
fllchenspannung an der Grenzfllche zur Fliissigkeit nicht in die Betrachtung einbezogen. In der vorliegen- 
den Arbeit wird die Theorie iiberpriift und die oben erwlhnten Einfliisse werden beriicksichtigt. Fiir die 
Berechnung des Massenstromes durch Diffusion in die Blasen wird ein Model1 nach Levich vorgeschlagen. 
Fiir Messwerte aus den Ergebnissen von Parkin und Kermeen wurden Ergebnisse erhalten und im Zusam- 
menhang mit diesen Versuchen diskutiert. Eine Erkllrung fiir den Unterschied zwischen theoretischen und 

experimentellen Werten wird vorgeschlagen. 

hIHoT~-HewonbKo JIeT TOMY HaaaA HepMeeHOM II ~pyrki~u 6bwrU ony6nuKoeanar 
npeKpacn0 nposeAenHble aKcnepumenTar no pocky ManbIx KannTaqUoHnbIx UyanpbKoa. OHK 
me AaaU npa6sUmennhlft pacqeT 9peMeHu pocTa UyaHpbrcoB ~0 onpeAeaeHnor0 paaMepa 
6naroAapx KOHBt?KTUBHOfi AU@yaUU. Bee me B aTOg pa6oTe OCTanuCb HeysTeHHnMU napo- 
conepmariue nyablpbKon u UoBepxnocTHoe HaTnmeHUe Ha rpariuqe paanena c muAKocTbIo. 
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TeopeTmecKwe pawem B HacToJi~eti pa6oTe paccaraTpHBaxoTcfI BPHOBO. ~puHMMaIoTcR BO 

BHmame ynonrrHyTare mme a*~~bt. Am pacqeTa ~w+$ys~o~~oro MaccoBoro noToKa B 

nyavpbKaxnpe~saraeTcR:nao~enb~estlra.~oay~eHHnepeaynbTaTnr,~o6~eat,y~OBJreTBOpa- 

TeJlbHO COIXaCyIoTCH C 'dKCnepMMeHTaJIbHbIYH AaHHIJMM napKHHa II bpMeeH& r@%Jla- 

raeTCH 06WWHeHHe pacxom~eHm Me?Kfiy TeOpeTliYeCKAMA Ei aKcnepuMeHTanbHbIMA 

3HaUeHAHMH. 


